China Custom Worm Screw Helical Hypoid Straight Ring Spiral Forged Bevel Spur Differential Steering Spline Plastic Nylon Stainless Steel Gear with Great quality

Product Description

 Material:

Stainless steelSS201,SS303,SS304,SS316,SS416,SS420,17-4PH,SUS440C 

AluminumAL2571,AL5754(Almg3),AL5083,AL6061,AL6063,AL5052,AL7075

Carbon steelQ235,S235JR,1571, 1015, 1571, 1571, 1030, 1035, 1040, 1045

Alloy steel40Cr,15CrMo,4140,4340,35CrMo,16MnCr5

Brass/Copper/BronzeC11000, C15710, C12000, C26000, C36000, etc.etc…

Stainless Steel (201, 302, 303, 304, 316, 420, 430) etc…

Steel (mild steel, Q235, 20#, 45#) etc…

Process:

CNC Machining, turning,milling, lathe machining, boring, grinding, drilling,broaching, stamping,etc…

Surface treatment:

Clear/color anodized; Hard anodized; Powder-coating;Sand-blasting; Painting;    

Nickel plating; Chrome plating; Zinc plating; Silver/gold plating; 

Black oxide coating, Polishing etc…

Gerenal Tolerance:(+/-mm)

Gear grade :7Gread (ISO)

Run Out:0.005mm

Roundness:0.001mm

ID/OD Grinding: 0.002

Roughness : Ra 0.05 Rz 0.2

Certification:

IATF 16949, ISO140001

Experience:

16 years of  machining products

Packaging :

Standard: carton with plastic bag protecting

For large quantity: pallet or wooden box as required

Lead time :

In general:30-60days

Term of Payment:

T/T,  L/C, etc

Minimum Order:

Comply with customer’s demand

Delivery way:

Express(DHL,Fedex, UPS,TNT,EMS), By Sea, By air, or as required

Our advantage: *Specialization in CNC formulations of high precision and high quality *Independent quality control department *Control plan and process flow sheet for each batch *Quality control in all whole production *Meeting demands even for very small quantities or single units *Short delivery times *Excellent price-quality ratio *Absolute confidentiality *Various materials (stainless steel, iron, brass, aluminum, titanium, special steels, industrial plastics)

FAQ: Q1: How can I get the samples? A: If you need some samples to test, you should pay for the transportation freight of samples and our samples cost. Q2: Can we have our marking,Logo or company name to be printed on your products or package? A: Sure. Your marking,logo,or company name can be put on your products by Laser machine Q3: How to order? A: Please send us your purchase order by Email, or you can ask us to send you a Performa invoice for your order. We need to know the following information for your order. 1) Product information-Quantity, Specification ( Size, Material, Technological and Packing requirements etc.) 2) Delivery time required 3) Shipping information-Company name, Street address, Phone&Fax number, Destination sea port. 4) Forwarder’s contact details if there’s any in China. Q4: When can you get the price? We usually quote within 48 hours after we get your inquiry. If you are very urgent to get the price, please call us or tell us in your email so that we will regard your inquiry priority. Kindly note that if your inquiry is with more details then the price we quote will be more accurate .Q5: How can you get a sample to check our quality? After price confirmation, you can require for samples to check our quality .Q6: What kind of files do we accept for drawing? A: PDF, CAD,STP,STEP Q7: What about the lead time for mass production? Honestly, it depends on the order quantity and the season you place the order. Generally speaking,it would need about 30-60days to finish the sample. Q8: What is our terms of delivery? We accept EXW, FOB, CFR, CIF, DDU, DDP, etc. You can choose the 1 which is the most convenient or cost effective for you.

 

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Gear Position: Internal Gear
Manufacturing Method: Cast Gear
Toothed Portion Shape: Spur Gear
Material: Stainless Steel
Customization:
Available

|

Customized Request

worm gear

Can worm gears be used in precision manufacturing equipment?

Yes, worm gears can be used in precision manufacturing equipment. Here’s a detailed explanation of their use in precision manufacturing:

1. Precision Motion Control: Worm gears can provide precise motion control in manufacturing equipment. Their design allows for high gear ratios, which enables fine adjustments and precise positioning. This is particularly useful in applications where accurate and repeatable movement is required, such as CNC machines, robotic arms, and coordinate measuring machines (CMMs).

2. Load Holding and Backdriving Prevention: Worm gears have a self-locking characteristic, meaning they can hold loads in position without the need for additional brakes or clutches. This feature is advantageous in precision manufacturing equipment where holding a position is critical. The self-locking property also helps prevent backdriving, ensuring stability and accuracy during operation.

3. Compact Design: Worm gears have a compact design, which can be beneficial in space-constrained manufacturing equipment. Their worm and worm wheel configuration allows for a compact footprint, making them suitable for applications where size limitations exist.

4. High Torque Transmission: Worm gears can transmit high torque, making them suitable for heavy-duty precision manufacturing equipment. The meshing of the worm and worm wheel generates a large contact area, enabling efficient power transfer and load handling capabilities.

5. Reduced Noise and Vibration: Worm gears operate with a sliding motion rather than a rolling motion, resulting in reduced noise and vibration levels. This characteristic is advantageous in precision manufacturing equipment, as it helps maintain a quieter working environment and minimizes potential disturbances that could affect the precision of the manufacturing process.

6. Lubrication and Maintenance: Proper lubrication is crucial for the efficient and reliable operation of worm gears in precision manufacturing equipment. Lubricants help reduce friction and wear between the gear teeth, ensuring smooth and accurate motion. Regular maintenance and lubrication schedules should be followed to optimize gear performance and extend their service life.

While worm gears offer several advantages in precision manufacturing equipment, it’s important to consider the specific requirements of the application. Factors such as gear ratio, efficiency, backlash, and operating conditions should be carefully evaluated to ensure that worm gears are the appropriate choice for achieving the desired precision and performance.

Overall, worm gears can be successfully utilized in precision manufacturing equipment, providing precise motion control, load holding capabilities, compactness, and high torque transmission. When properly selected, installed, and maintained, worm gears can contribute to the accuracy, reliability, and efficiency of precision manufacturing processes.

worm gear

How do you calculate the efficiency of a worm gear?

Calculating the efficiency of a worm gear involves analyzing the power losses that occur during its operation. Here’s a detailed explanation of the process:

The efficiency of a worm gear system is defined as the ratio of output power to input power. In other words, it represents the percentage of power that is successfully transmitted from the input (worm) to the output (worm wheel) without significant losses. To calculate the efficiency, the following steps are typically followed:

  1. Measure input power: Measure the input power to the worm gear system. This can be done by using a power meter or by measuring the input torque and rotational speed of the worm shaft. The input power is usually denoted as Pin.
  2. Measure output power: Measure the output power from the worm gear system. This can be done by measuring the output torque and rotational speed of the worm wheel. The output power is usually denoted as Pout.
  3. Calculate power losses: Determine the power losses that occur within the worm gear system. These losses can be classified into various categories, including:
    • Mechanical losses: These losses occur due to friction between the gear teeth, sliding contact, and other mechanical components. They can be estimated based on factors such as gear design, materials, lubrication, and manufacturing quality.
    • Bearing losses: Worm gears typically incorporate bearings to support the shafts and reduce friction. Bearing losses can be estimated based on the bearing type, size, and operating conditions.
    • Lubrication losses: Inadequate lubrication or inefficient lubricant distribution can result in additional losses. Proper lubrication selection and maintenance are essential to minimize these losses.
  4. Calculate efficiency: Once the power losses are determined, the efficiency can be calculated using the following formula:

Efficiency = (Pout / Pin) * 100%

The efficiency is expressed as a percentage, indicating the proportion of input power that is successfully transmitted to the output. A higher efficiency value indicates a more efficient gear system with fewer losses.

It is important to note that the efficiency of a worm gear can vary depending on factors such as gear design, materials, lubrication, operating conditions, and manufacturing quality. Additionally, the efficiency may also change at different operating speeds or torque levels. Therefore, it is advisable to consider these factors and conduct efficiency calculations based on specific gear system parameters and operating conditions.

worm gear

Understanding Worm Gears and Their Operation

A worm gear is a type of mechanical gear that consists of a threaded screw-like component (called the worm) and a toothed wheel (called the worm gear). It is used to transmit motion between non-intersecting and perpendicular shafts. Here’s how it works:

The worm, typically in the form of a cylindrical rod with a helical thread, meshes with the teeth of the worm gear. When the worm is rotated, its threads engage with the teeth of the worm gear, causing the gear to rotate. The direction of rotation of the worm gear is perpendicular to the axis of the worm.

One significant feature of worm gears is their ability to provide high gear reduction ratios. The number of teeth on the worm gear relative to the number of threads on the worm determines the reduction ratio. This makes worm gears suitable for applications where high torque and low-speed rotation are required.

Worm gears are commonly used in various mechanical systems, such as conveyor systems, lifts, automotive steering mechanisms, and more. Their unique design also provides a self-locking feature: when the system is not actively rotating the worm, the gear cannot easily backdrive the worm due to the angle of the threads, providing mechanical advantage and preventing reverse motion.

China Custom Worm Screw Helical Hypoid Straight Ring Spiral Forged Bevel Spur Differential Steering Spline Plastic Nylon Stainless Steel Gear with Great qualityChina Custom Worm Screw Helical Hypoid Straight Ring Spiral Forged Bevel Spur Differential Steering Spline Plastic Nylon Stainless Steel Gear with Great quality
editor by CX 2023-11-14